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Diffusion in a Lattice of Randomly Placed Sites 
and Application to ac Conductivity 
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The transition probability for a carrier hopping between randomly placed 
sites is determined for a system in thermodynamic equilibrium. The effect 
of the first waiting time is included and the result is shown to be consistent 
with the theory of statistical thermodynamics. Furthermore, a comparison 
is made with the master equation approach, which is shown to be exact 
when the waiting times are exponentially distributed. The application to 
ac conductivity is discussed. 
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1 .  I N T R O D U C T I O N  

Similar expressions for the ac conductivity for classical hopping conduction 
have been obtained by Scher and Lax (1~ and by ButcherJ 2) In both cases a 
Green's function is required. Attempts to find this have been made by these 
authors, the first through probabilistic methods using the Montroll-Weiss (3) 
continuous-time random walk formalism as an approximation to a hopping 
over a random collection of sites, and the second through the establishment 
of  rate equations. In the present study.a rather general probabilistic approach 
will be undertaken to find a Green's function for a simple mechanism of 
transport:  This will then be compared with the master equation (rate equation) 
approach. 

The model is one in which the carriers move independently, performing 
jumps (which are virtually instantaneous) between highly localized sites 
corresponding to potential wells. The positions and the depths of  the wells 
can in principle be described by a joint probability density. It  is assumed that 
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a carrier is trapped at a site before hopping by virtue of the thermal agitation 
of the lattice and that the waiting intervals between hops in a particular 
lattice are statistically independent random variables. Furthermore, the 
individual jump vectors are independent of the associated waiting times but 
consecutive vectors may be dependent. 

In applications to ac conductivity the Green's function is inserted into J 
the appropriate equation for the conductivity and an average performed over 
the ensemble of all possible site locations and energies. This turns out to be 
rather difficult in practice. The problem is circumvented by Scher and Lax 
by using an approximation. Unfortunately, it is not clear that the particular 
approximation employed is justified since an apparent improvement in the 
formalism reduces their result to a triviality. (~ This occurs when account is 
taken of the "first waiting time density." 

Although the concept of a Green's function appears straightforward, 
there are a number of possible probabilistic interpretations. Thus we may have, 
for example, 

G~j(t) = P {carrier is observed at s i tej  at time t given 
it was at site i at t = O} (1) 

G~j(t) = P {carrier is observed at site j at time t given 
it hopped into site i at t = O} (2) 

G~j(t) = P {carrier is observed at s i tej  at time t 
a n d  at site i at t = 0} (3) 

where definition (3) is actually a joint probability. In applications to ac 
conductivity of a lattice with carriers in thermodynamic equilibrium the 
time t = 0 is presumably arbitrary. Nevertheless, Scher and Lax employ the 
definition (2), which particularizes the starting times to those at which a hop 
occurs. Although it would intuitively be expected that this should not lead 
to significant error in the Green's function at sufficiently long times and 
therefore to the ac conductivity at low frequency, this is not necessarily true. (4~ 
It has been shown that the use of definitions (1) or (3) can lead to quite differ- 
ent behavior: the Montroll-Weiss formalism has recently been modified to 
include the effect which is represented by the inclusion of the first waiting 
time probability density. ~5~ 

A rate equation approach ostensibly avoids both difficulties since the 
probability distributions for any hopping time interval do not appear 
explicitly. The method is equivalent to the use of a master equation in 
stochastic theory. However, the master equation can only be valid under 
certain circumstances and it will be shown that it holds when the waiting 
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times are exponentially distributed. Fortunately, this is the most likely 
assumption. 2 

2. DEFINITIONS A N D  FIRST WAIT ING T IME DISTRIBUTION 

We consider a fixed number of sites N and assume that the probability 
density for a single hop in a particular site configuration can be determined 
and cast into the form of a matrix ~,j(t). The quantity ~,j(t) dt is then the 
conditional probability that in a single hop the carrier jumps onto site j 
in the time interval (t, t + dt)  given that at t = 0 it jumped onto site i. 
If  sooner or later the carrier must jump from any site, 

A,j(~) = 1, a l l /  (4) 
J 

where A, j ( t )  is the probability distribution corresponding to A,j(t): A,j is a 
stochastic matrix by virtue of Eq. (4). At this stage A~(t) is quite general 
apart from condition (4) and cannot be diagonalized. 

From earlier considerations A~j(t) can be decomposed into a product: 

;~ , j ( t )  = 4 , ~ ( t ) a , j  ( 5 )  

where ~b~(t) is the probability density for the first hop occurring out of site 
i in time interval (t, t + dt) ,  given that the carrier hopped into site i at time 
t = 0. The A~j are the probabilities that, given a hop from site i, the carrier 
goes directly to site j.  The matrix elements ~j form a stochastic matrix and 
since the hops are instantaneous, it is useful to put A, = 0. The energy depth 
E~ of a well can be related to ~b,(t) using simple models: If/z, is the mean time 
between hops into and out of well i, we may expect (to be verified later) 

i~, = v -1 e x p ( E J k T )  (6) 

where v is of the order of the Einstein frequency of the lattice, k is Boltzmann's 
constant, and T is the temperature. A model involving a large number of 
Bernoulli trials leads to an exponential density (see footnote 2) 

~b,(t) = /zF  1 exp( -  t/~,) (7) 

It will be convenient to work with the Laplace transform of ~b,(t) (not 
necessarily exponential), namely ~(s) (it can be shown that this is completely 
monotone), which can be expanded for a small s and if ~z, is finite: 

~b,(s)  = 1 - s t , ,  + .. .  ( 8 )  

We begin by finding the probability of uk~(t) dt  that the carrier makes a 
hop to site n in interval (t, t + dr), given that it jumped into site k at t = 0. 

2 An exponential density results for simple models of radioactive decay. A particle 
oscillates in a potential well and each time it reaches the wall it has a very small 
probabili ty of escape p. As p -+ 0 and the rate of " t r ia ls"  increases, the probabili ty 
that  the particle does not  escape (1 - -p ) "  approaches e -=~. 
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This event could be the result of a single hop or many hops over different 
paths. Summing the probabilities for all these mutually exclusive outcomes 
yields 

uk,(t) = 3k,3(t) = Ak,(t) + ~ Ak~(t) * A~(t) + ..- (9) 
I 

where 3k, represents the Kronecker 3, 3(t) is the Dirac 3-function, and the 
symbol �9 represents a convolution in time. Taking the Laplace transform 
with respect to time and expressing the result in matrix form, we obtain 

~(s) = ] + ~ + (~)~ +-. .  (10) 

where 

~(s) = ~,(s)~,j (11) 

Provided (1 - ~ )  is not singular, we may write 

~(s) = (i - ~ ) - 1  (12) 

We shall require l i m t ~  fi(t) and can obtain this by employing a limit 
theorem: 

limt_.~ fi(t) = lim~0 s(1 - q~)-~ (13) 

because ~(0) = ] and ~ is a stochastic matrix obeying a condition like (4), 
the sums of the individual rows of (1 - ~(0)~) are zero, so that its determi- 
nant is zero. This leads to some complications in the evaluation of ~(oo). In 
principle the pole that will arise at s = 0 need not be simple. However, the 
A~j are actually random variables, so that we shall assume that the probability 
of a multiple-order pole occurring in a lattice in which sooner or later all sites 
will be occupied is zero. The latter restriction is necessary because if we have, 
for example, two quite separate lattices, the probability matrix ~ can be 
partitioned into two matrices along the diagonal and clearly when s = 0 the 
determinant of 1 - ~ will possess a second-order zero. 

Concentrating on lattices that may not be subdivided in this way, let 

( i  - ~ ) - ~  = ['(s)lA(s) (14) 

where f~T (the transpose of F) are the cofactors of (i - ~ )  and A(s) is the 
determinant. Evidently 

a (~)  = ~(0)/A'(0) (15) 

The derivation of cofactors pr  is found in the appendix, where it is 
shown that condition (4) leads to the surprising result 

P,j(0) = a~ as c~z (16) 

O~ 1 O~ 2 (Z 3 

The elements at depend only on ~. 
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The  differentiation of  the de terminant  can be pe r fo rmed  by rows to 
yield a sum of  determinants :  

A,(O) = I _ OA2~ ~:t~121 - tzl;~ls "'" t + ' " ; ~ 2 a  "'" (17) 

=  1r11(o) +  2r22(o) + + . . .  ( 1 8 )  

F r o m  Eqs. (15), (16), and (18) we have 

uk~(~ = ~ a~/h = un (say) (19) 

As expected, after a long t ime the probabi l i ty  o f  observing the carrier jumping  
into site n in a t ime interval d t  is independent  of  its initial position. 

We do not  wish to part icularize the start ing t ime for  the Green ' s  function 
and so use definition (3), which is actually a joint  distr ibution (intersection): 
Tha t  of  definition (1) will be obtained f rom it later. For  this it is necessary 
to introduce Hm~(r ,  ~), which is defined to be the probabi l i ty  tha t  the carrier 
j umps  in a single hop to site n in a t ime less than  ~ a n d  it was on site m at  
t ime r, where ~ = 0, given that  the carrier  was put  into the lattice at r = 0. 
This quant i ty  takes care of  the difference in definitions and is the first waiting 
t ime distribution. To  represent  a system in the rmodynamic  equil ibrium we 
are going to let ~- --> c~. I f  the carrier hops  into site m at some t ime x, measured 
f rom ~- = 0, the probabi l i ty  tha t  we observe a single hop f rom site m to site 
n in the t ime interval (~- + ~ - x, r - x) is just  equal  to 

Am,(r + ~ - x )  - A m , ( r  - x )  (20) 

Thus,  using Eq. (19), 

Hmn = Urn(X) d x  [Amn(r -t- ~ - x )  - Amn('r - x)] (21) 

As ~- --> o% we can treat  urn(x) as a constant  given by Eq. (19) and, by changing 
the variables,  show that  in the limit (see Feller(6)). a 

where a~ = a~3,~. Tak ing  Laplace t ransforms gives for  the corresponding 
density 

,:(s) _- 

a Care must be exercised to ensure convergence of the integrals that appear in the 
transformation of variables. 
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We shall also need the probability that, if the particle is located at site 
n at g = O, it does not hop in a time less than g. This is given by 

P,{T> ~} = u~(x) dx 1 - ~ A ~ j ( r -  x +  ~) (24) 

Letting y = r + ~ - x, we have 

and taking the limit �9 -+ Go as before 

P{T > ~} = 8 cq/h ~.  [A.,(oo) - A.j(y)l dy (26) 

An integration by parts shows that 

fo ~ [A~j(oo) - A~j(y)I dy = yt~j(y) dy =/z~;~j (27) 

so that Eq. (26) can be expressed as 

P{T > ~} = ( ~  a,/z,)-z%{/z~ - ~ ~ [Anj(oo ) - A,~(y)] ely} (28) 

and taking the Laplace transform, we have 

/5.(s) = (s 2 ~ # h ) - ~ . [ s / z .  - 1 + ~.(s)] (29) 

or in matrix form (it is diagonal) 

~ =  ( s 2 ~  ~ , / h ) - ~ & ( s t 2 - 1 +  ~) (30) 

where/2 = thStj. 

3. O C C U P A T I O N  
EQUIL IBRIUM 

PROBABILITY IN T H E R M O D Y N A M I C  

The first waiting time probability distribution is defined essentially by 
Eq. (22): It is interpreted as the probability that a particle jumps from site 
m to site n in a single hop for the first time in interval [0, ~] and that it was 
located at site rn at t = 0. The time t = 0 is now arbitrary and should corre- 
spond to the time we first observe the particles in a system in thermodynamic 
equilibrium. Since Hm~(~) is a joint distribution, we can easily find the 
occupation probability Qm, which is just a marginal distribution, i.e., 

Qm = ~ Bran(00) (31) 
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where Hmn(Oo) is the probability that the particle leaves site m to go to site 
n in a single hop. Thus since/]r(oe) = lims.0 h(s), we have from Eqs. (23) 
and (8) 

am=~[(~(,~il~,)-l~mtZmAmn] (32) 

This is simplified by noting that ~ is a stochastic matrix, so that 

Qm = c~/x i ~m/Z~ (33) 

From the theory of statistical thermodynamics we expect that Qm should 
only be a function of the site energy Em (i.e., ~m), whereas ~,, contains infor- 
mation about all other sites. The choice of ~ is rather general and can include 
the application of fields in a physical system. If we reject this possibility, it 
seems reasonable that the % should all be equal, so that the standard result 
is obtained. This would imply that ~(0) is symmetric, so that ~ is also sym- 
metric, i.e., doubly stochastic. The actual value of ~ is immaterial since it 
cancels out in Eq. (33), for example, though some tedious calculations in- 
volving ~ show that it is unity. With am = 1 and Eq. (6) we now have 

Qm = [exp(Em/kTl / ~  exp(EJkT) (34) 

which is the usual result from statistical thermodynamics. 
It is important to note that, conversely, the above considerations, 

together with the standard result, lead directly to a relation between/~ and 
E~ of the form of Eq. (6), and that this conclusion does not depend on a 
choice of probability density ~b~(t). 

If  we do not insist on the independence of the time to make a hop and 
the outcome of the hop, and instead of Eqs. (5) and (8) write 

A~j(s) = A~(1 - ~7~js + ..-) (35) 

then an identical series of steps yields 

am=(~x,~,j.~,j)-lO:m~mn,~mn (36) 

Thus with ~ again constant and ~ symmetric the equivalent to Eq. (6) is 

~, Wm,)tm, oc exp(Em/kT) (37) 

The lhs is just the mean time for a hop (randomized over all outcomes from 
site m). 



174 d.K.E. Tunaley 

4. TRANSIT ION PROBABILITY 

The joint transition probability can now be determined by adding the 
probabilities associated with the mutually exclusive outcomes in which the 
carrier arrives at site n in a time less than t and does not jump out of this site 
in the remaining interval and was on site m at t -- 0: For m # n 

Gmn(t) = Hmn(t) + ~ Hmj(t) * Ayn(t) q- ~ Hm,(t) * Aj~(t) * A~n(t ) -t- "" 
] jtc 

where the symbol �9 now indicates a convolution of distributions in the sense 
of Feller. <6) Taking the Laplace transform yields 

~(s)  = h(1 - 5"~)-1(i - 5)Is, m # n (39) 

Equations (38) and (39) take care of jumps from site n back to itself but we 
must include the event that a jump from site n does not occur at all. Therefore 
we must add on the rhs of Eq. (30). Inserting the expression for/~ from Eq. 
(23) gives 

(40) 

which may be simplified: 

(41) 

At this point we can determine the Green's function of definition (1). This is 
a conditioned probability distribution and is equal to that in Eq. (41) divided 
by Q, i.e., 

G ~  = Gmn/ Qm 

Thus 

G<g~ = (s2/2)-~[st2 - (i - ~)(] - 57t)-1(1 - 5)] (42) 

It can be verified that the Green's function in Eq. (41) is symmetric (expand 
the reciprocal matrix in a power series), while that of Eq. (42) is not. 

5. C O M P A R I S O N  W I T H  MASTER EQUATION 

The master equation (or Kolmogorov's forward equation) for the process 
can be written in the form 

�9 ~,j ~.jz - ~ G~)Rk~ + 3,k3(t) (43) 
J l 
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where G~ ~ is a Green's function according to definition (1) and the Rjk 
are the rates of hopping from site j to site k. The first term on the rhs repre- 
sents the rate of hopping into site k from all other sites and the second term 
is the net rate of hopping from site k. 

Comparison of the master equation approach with the probabilistic 
method has been made for simple random walks by Bedeaux et al. <7~ In their 
case the two methods are equivalent if the waiting time distributions are all 
exponentially distributed with identical means. Here the discussion will be 
generalized. 

We assume now that the r correspond to exponential distributions 
so that 

r = (1 + s/z,) -1 (44) 

If  this is inserted into Eq. (42), it is readily shown that 

Gff~ = [sl - / 2 - ' ( ~  - i)] -1 (45) 

On the other hand, we may take the Laplace transform of Eq. (43) and the 
result is 

~<m> = (si - h + T)-~ (46) 

where 

T~j = 8~j ~ Rjl 
1 

Consequently, provided we identify the rates 

/~ =/2-1~ (47) 

the two treatments give the same result. When/2 is a scalar, the result is 
identical to that of Bedeaux et al. It is important to note that /~ is not sym- 
metric except when all the tz~ are equal. Thus the identification satisfies the 
principle of detailed balance, since we have 

Rmn/Rnm = exp[-(Em - En)]/kT (48) 

and supports the conclusion that A~j should be symmetric for a system in 
thermodynamic equilibrium. 

The Green's function of Eq. (41) becomes now 

~(s) = / 2 ( s / 2 - ~  + 1)-1 /2 /~f f ,  (49) 

(This is obviously symmetric.) It is worthwhile remarking that one of the 
reasons for the simplicity of Eq. (49) is that the first waiting time density 
given by Eq. (23) with ~ = 1 is now given by 

= = 07,:  ( 5 o )  
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In effect the conditional density corresponding to a hop for the first time to 
site j in time interval [t + dt ] given that the particle was on site i at t = 0 
is the same as single hop transition probability ~ ,  which particularizes the 
starting time of the waiting period. The exponential densities given by Eq. 
(44) are unique in this respect. 

6. ac C O N D U C T I V I T Y  

To establish the conductivity, the Scher and Lax formula can be 
employed using the Green's function of definition (3): 

~r(co) = (-o)2ne2/2kT) ~ (xm - x,)2Gmn(ioJ) (51) 
r a ~  

where n is the carrier density, e is the carrier charge, and x~ is the coordinate 
of the ith site for a direction parallel to the electric field which is applied to 
make a measurement. If  the interhop intervals are exponentially distributed, 
the rate equation is valid and the expression of Eq. (49) can be employed. 
This is essentially the route taken by Butcher. It is evident that the ensemble 
averaging over the/~ and the x~ is not at all trivial and even the low-frequency 
behavior is difficult to ascertain. An additional complication, which does not 
appear in other work, involves the fact that the rates are not statistically 
independent because of condition (4) and the symmetry of ~t. In principle 
this will have an effect even if the energy depths of the wells are independent 
random variables: Hopping only to nearest neighbors will be the most 
seriously affected situation. 

Scher and Lax use a technique in which they effectively replace the 
Green's function in Eq. (41) by one appropriate to a Montroll-Weiss 
continuous-time random walk, i.e., 

Gm,(ko) --+ Q,~G'm,~(iw) 

where Gm~(iw) is the Green's function according to definition (2), which 
particularizes the starting time. As long as the hopping time densities are 
exponential, given by Eq. (44), this is unimportant. However in the MW walk 
all individual hopping times are independent and are identically distributed 
and they now insert into G/,,(ico) a randomized density which is not expo- 
nential. Of course it can be argued that definition (1) should really be involved 
in the replacement of Gm,(iw), but if this is done and the randomized density 
inserted, the result is trivial and gives a conductivity which is constant. 
Another argument involves the use of the master equation. Again the argu- 
ment finally must involve the approximation that all the ~b~(t) may be replaced 
by nonexponential ~b(t) and that the hopping times are independent. Naturally 
the effect of the generalized first waiting time is not included in the formula- 
tion of the master equation since the basic probability distributions are 
exponential. Therefore the validity of this type of approach is uncertain. 
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A P P E N D I X  

The cofactors  o f  the  mat r ix  (1 - ,~) can be found  by picking an  e lement  
o f  the mat r ix :  Let  the cofac tor  be rj~. The j t h  row and i th co lumn are  now 
deleted and it is necessary to evaluate  the  de te rminan t  tha t  remains.  This 
can be considered as a row of  co lumn vectors a~, where the  subscr ipt  refers 
to  the column,  i.e., 

I'j~ = ( - 1 )  ~+j de t (a l ;  ,..; a~ - l ;  a~+l; --.) 

C o m p a r i n g  this wi th  rj,~+ z, we ob ta in  

Pj,~+~ = ( - 1 )  ~+j+l det(a~ ; ...; ai_~; a~; a~+2; ...) 

However ,  because the  row sums o f  1 - ~ are  zero accord ing  to Eq. (4), we 

have 

~ ae  = 0 

so tha t  subst i tut ing for  a~ in l?j,~ + ~ yields 

I~j,~+ 1 = ( -  1) ~+j+l det(a~; ...; a~_l ; - a l  - a2 . . . .  a~_l - a~+l; ...; a~+z; -..) 

Thus  Fj, ~+ ~ is a sum o f  de te rminants  but  all except one o f  them have two 
similar  co lumns  and are  equal  to zero. We have 

I?~,i+~ = ( - l y  +j+~ det(a~; .-.; - a~+~;  a~+2; ...) = Fj~ 

Therefore  the elements of  each row o f  the cofac tor  mat r ix  are  the same and  

P j i  

it can be expressed as 

c~ 2 o~ 2 o; 2 

3 ~ ~ 
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